
NIST SP 800-6

 Automated Tools for
 Testing Computer Systems Vulnerability

 W. Timothy Polk
 Dec. 1992

ASCII Version; No indices

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
12/1/1992

3. REPORT TYPE AND DATES COVERED
Report 12/1/1992

4. TITLE AND SUBTITLE
Automated Tools for Testing Computer System Vulnerability
(NIST SP 800-6)

5. FUNDING NUMBERS

6. AUTHOR(S)
Polk, W. Timothy

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

NIST

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

IATAC
3190 Fairview Park Drive
Falls Church, VA 22042

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; Distribution unlimited

12b. DISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 Words)

Computer security "incidents" occur with alarming frequency. The incidents range from
direct attacks by both hackers and insiders to automated attacks such as network worms.
Weak system controls are frequently cited as the cause, but many of these incidents are the
result of improper use of existing control mechanisms. For example, improper access control
specifications for key system files could open the entire system to unauthorized access.
Moreover, many computer systems are delivered with default settings that, if left
unchanged, leave the system exposed. This document discusses automated tools for testing
computer system vulnerability. By analyzing factors affecting the security of a computer
system, a system manager can identify common vulnerabilities stemming from administrative
errors. Using automated tools, this process may examine the content and protections of
hundreds of files on a multi-user system and identify subtle vulnerabilities. By acting on
14. SUBJECT TERMS
IATAC Collection, vulnerability

15. NUMBER OF PAGES

36

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

 Table of Contents

1. Introduction
 1.1 Intended Audience
 1.2 How To Use This Document
2. Vulnerability Testing Objectives
 2.1 Stand-Alone Systems
 2.1.1 Password Mechanisms
 2.1.2 User Files
 2.1.3 System Files
 2.2 Network Hosts
 2.3 Summary
3. Vulnerability Testing Methods
 3.1 Active and Passive Testing
 3.2 Scope
 3.3 Local, Network, and Distributed Testing
 3.4 Reporting Methodology
 3.5 Summary
4. Vulnerability Testing Techniques
 4.1 Configuration Review Tests
 4.2 File Content and Protection
 4.3 Bug Fixes
 4.4 Change Detection Tests
 4.5 System-Specific Testing
 4.6 Distributed Communications
 4.7 Artificial Intelligence
 4.8 Summary
5.0 Policy and Procedures
 5.1 Testing Procedures and Responsibilities
 5.2 Developing a Toolkit
 5.3 Distribution of Tools
 5.4 Summary

A References

B Primary Tools Reviewed

 Abstract

Computer security "incidents" occur with alarming frequency. The
incidents range from direct attacks by both hackers and insiders
to automated attacks such as network worms. Weak system controls
are frequently cited as the cause, but many of these incidents are
the result of improper use of existing control mechanisms. For
example, improper access control specifications for key system
files could open the entire system to unauthorized access.
Moreover, many computer systems are delivered with default settings
that, if left unchanged, leave the system exposed.

This document discusses automated tools for testing computer system
vulnerability. By analyzing factors affecting the security of a
computer system, a system manager can identify common
vulnerabilities stemming from administrative errors. Using
automated tools, this process may examine the content and
protections of hundreds of files on a multi-user system and
identify subtle vulnerabilities. By acting on this information,
system administrators can significantly reduce their systems'
security exposure.

Automated vulnerability testing tools are available for a wide
variety of systems. Some tools are commercially available; others
are available from other system administrators. Additional tools
may be developed to address specific concerns for an organization's
computer systems. This document examines basic requirements for
vulnerability testing tools and describes the different functional
classes of tools. Finally, the document offers general
recommendations about the selection and distribution of such tools.

1. Introduction

Most modern computer systems have effective controls for
implementing computer security. However, many systems achieve
considerably less security than their controls could offer due to
improper use of those controls or errors in system configuration.
The existence of these controls presents an illusion of security
to management and users who assume the controls are properly
configured. Thus, they maintain sensitive data and applications on
the system as if it offered real security.

Many computer security incidents result directly from such improper
use. A General Accounting Office report describes one example:

 The hackers exploited well-known security weaknesses --
 many of which were exploited in the past by other hacker
 groups. These weaknesses persist because of inadequate
 attention to computer security, such as password
 management, and the lack of expertise on the part of some
 system administrators...[1]

Other highly publicized incidents, such as the Internet worm in
November, 1988 [2], and the DECnet worms (four cases in 1988 and
1989,) [3] [4] [5], exploited similar weaknesses.

This problem is not necessarily due to incompetence; even the most
expert administrator may make errors due to the size and complexity
of computer systems. The average system supports a wide range of
services and a large number of files. The security mechanisms used
to control access to services and files must be flexible to address
a wide variety of requirements. This flexibility enables users and
administrators alike to heighten or degrade the security of the
computer system.

To ensure that an acceptable level of security is achieved, the
administrator should utilize automated tools to regularly perform
system vulnerability tests. The tests examine a system for
vulnerabilities that can result from improper use of controls or
mismanagement. Examples of such vulnerabilities include:
o easily guessed passwords;
o improperly protected system files;
o opportunities for planting Trojan horses; and
o failure to install security-relevant bug fixes.
To identify such vulnerabilities, the testing process analyzes the
content of various files in the system and the attributes
associated with those files. The number of programs and sheer
magnitude of data make it difficult for a system administrator to
assess a system's security. An extremely large number of tests and
checks may be required. As a result, that review may be feasible
only with the assistance of the computer itself.

Software tools are available to aid the system administrator in
this task. These tools use the power of the system itself to
perform the large number of tests required. These tools will be
referred to as automated vulnerability testing tools.

The goal of vulnerability testing is to achieve the greatest degree
of security possible, given a particular system. This process
focuses on the current state of that system to determine if common
vulnerabilities exist.

1.1 Intended Audience

This document addresses concerns of system administrators, security
practitioners and information resource managers. It provides
guidance on the implementation, selection, utilization, and
distribution of vulnerability testing tools.

The primary audience for this document is composed of system
administrators and system auditors who are responsible for
evaluating the security of systems. These tools provide the means
to perform that task. This document assists this audience by
providing guidance in the selection of appropriate tools and the
analysis of the output.

The secondary audience for this document includes security officers
and ADP managers who are responsible for implementing
organizational security policy. For this audience, computer system
vulnerability testing may be a facet of organizational policy, and
a means to verify compliance with policy. The information
contained in this document will assist them in the development and
evaluation of organizational policy based on these tools.

Finally, this document may prove useful to programmers who are
developing vulnerability testing software. It includes a basic
list of objects to review and some hints about applying the list
to particular systems. A number of common techniques for
implementing vulnerability testing are also described.

1.2 How To Use This Document

This document provides guidance on how to:
o determine the types of vulnerabilities that should be
 considered;
o determine what objects on a system should be reviewed;
o determine how to test those objects; and
o implement a vulnerability testing policy for an organization.

Section 2, Vulnerability Testing Objectives, describes the types
of vulnerabilities that can be addressed. Applying these
objectives to a particular system is reasonably straightforward;
each objective will relate to a set of programs or configuration
files.

Section 3, Vulnerability Testing Methods, describes how
vulnerability testing may be performed. The appropriate
methodology depends upon who performs the testing and the test
objectives. Testing a single computer is different from testing
a network of computers. Testing performed by the system
administrator will also differ from tests performed by the
organization's security officer. There are several general
vulnerability testing "methodologies"; each applies to certain
scenarios.

Section 4, Vulnerability Testing Techniques, describes and
classifies common techniques for the implementation of computer
system vulnerability tests. These techniques can implement a
variety of testing methodologies. These techniques use general
computing concepts and apply to a wide variety of systems.

Section 5, Policy and Procedures, includes a variety of
recommendations regarding the implementation of a vulnerability
testing program within an organization. Recommendations focus upon
the selection, distribution, and use of computer system
vulnerability tests.

The document is best read in its entirety. However, the relative
importance of certain sections will depend upon the reader. The
organizational security officer or information resource manager who
is developing policy may wish to skip the implementation details
in Section 4. Auditors and system administrators will find the
policy discussions in Section 5 less relevant than the remainder
of the document. Programmers will find Sections 3 and 4 most
informative.

2 Vulnerability Testing Objectives

The technical strength of the security in a computer system is a
function of the design of its hardware and software. However, the
actual security achieved is a function of the way the machine is
used. Security is affected by the actions of both the users and the
system administrators. Users may leave their files open to attack;
the system administrator may leave the system open to attack by
insiders or outsiders.

The features used (or misused) frequently involve system or user
environment configuration. Two examples are:
o A password system provides some degree of potential security.
 Users may negatively affect security by using a null password,
 selecting an easily guessed password, or taping the password
 to their terminals.
o The discretionary access controls associated with a typical
 operating system provide some degree of potential security.
 For convenience, configuration files set system and user
 defaults for the file protection attributes. This frees users
 from specifying the protections assigned for every file
 created. However, the security achieved will be minimal if
 a user's default file protections are "read/write/execute by
 ANYONE."
In each of these cases, little actual security is achieved. If a
user makes these mistakes, the damage is confined to portions of
the system that the user can access. If that user is the system
administrator, the entire system is at risk.

In combination, these errors place the system at greater risk than
either error alone. If the system administrator's default access
control settings allow anyone to alter files, non-privileged users
can replace common system executables with Trojan horses. If a
user also has a "joe account" (where the userid and password are
identical), an unauthorized person might guess the password and
gain access to the system. The unauthorized user could install a
Trojan horse and gain system administrator privileges.

In each of these cases, the system was vulnerable due to misuse of
the system's features. These mistakes occur with alarming
frequency. Fortunately, it is simple to identify many common
errors using vulnerability testing tools. These tools search for
vulnerabilities that arise from common administrator and user
errors.

Vulnerability testing tools analyze the current state of the
system. This is different from activity monitoring or intrusion
detection. Monitors and intrusion detection systems analyze events
as they occur. Vulnerability testing tools review the objects in
a system, searching for anomalies that might indicate
vulnerabilities which could allow an attacker to:
o plant Trojan horses;
o masquerade as another user; or
o circumvent organizational security policy.

Anomalies might be the unexpected modification of files,

"suspicious" content in certain files, or successful performance
of forbidden operations. These anomalies may indicate the presence
of a Trojan horse or an opportunity to plant one. The anomalies may
also indicate an opportunity to masquerade as another user.

There are basic rules for system security that address these
concerns. These rules apply to most computer systems. Automated
tools can review the system to verify compliance to these rules.
The following sub-sections describe some basic rules. The first
proposes rules for stand-alone systems; the second identifies
additional rules for systems connected to networks.

2.1 Stand-Alone Systems

To identify vulnerabilities on a stand-alone system, vulnerability
testing tools review executables shared among users, and security
controls that:
o restrict system access (passwords, smart cards, etc.);
o set the system configuration; or
o set a user's configuration.
 Vulnerabilities in the system access controls may allow one user
to masquerade as another. The configuration files and shared
binaries are attractive ways to install a Trojan horse. Finally,
the configuration files set default mechanisms that should reflect
your organization's security policy.

It is difficult and time-consuming to review all of these objects
by hand. However, a vulnerability testing package can quickly and
accurately perform such a review. The typical system has several
areas where vulnerability testing tools may be applied. These
include:
o identification and authentication systems (especially password
 systems);
o content and protection of critical system files, such as
 system configuration files;
o content and protection of critical user files, such as session
 start-up and configuration files; and
o prevention and detection of changes in system binaries.
 In this document, the term critical file refers to files whose
modification or disclosure could result in circumventing system
controls. That is, their modification may allow a user to gain
unauthorized access to a system (or resource) or plant Trojan
horses.

The following sections develop more specific objectives for the
application of vulnerability testing tools to password mechanisms,
user files, and system files respectively. These can be applied
to a particular system to identify specific vulnerabilities for
review.

2.1.1 Password Mechanisms

FIPS Pub 112, Password Usage, contains a basic set of rules for
password-based identification and authentication systems.[6] FIPS
Pub 112 describes ten factors which "must be considered, specified
and controlled when ... operating a password system." Of these
factors, four are candidates for automated vulnerability testing:

o length: Short passwords are easily broken by exhaustive
 attempts.
o lifetime: Passwords have a limited lifetime. They should be
 changed regularly or whenever they may have been compromised.
o source: Passwords that are not randomly selected may be
 guessed or discovered by a dictionary attack.
o storage: Passwords stored in a computer should be protected
 to prevent disclosure or unauthorized modification.
 Note that the six remaining factors are not candidates for
vulnerability testing. For instance, ownership is the set of
individuals who are authorized to use a password. FIPS Pub 112
states that "Personal passwords used to authenticate identity shall
be owned (i.e., known) only by the individual having that
identity." Vulnerability testing cannot ensure that individuals
have not disclosed their passwords.

2.1.2 User Files

The basic rules for the content and protection of User Files are
derived by considering the testing objectives. User files must
not permit the installation of Trojan horse programs. Users must
restrict access to objects they create according to the
organization's security policy. The following rules support these
goals:
o Protect personal start-up files from modification by others.
 (These files are ideal candidates for planting Trojan horses
 since they are ALWAYS executed.)
o Do not specify personal or shared directories before
 system-provided directories in executable search paths. (This
 invites the installation of Trojan horses.)
o Default protections assigned at file creation should meet
 system standards.
o Limit write access in a user's personal file space (by
 appropriate protection of user directories).

2.1.3 System Files

The rules for System Files are developed in a similar fashion.
The system configuration files and shared binaries must be
protected against Trojan horses and audit trails must be protected
against undesired modification. The following rules support these
goals:
o Restrict modification privileges for system binaries to
 systems staff.
o Review the content of system binaries for unexpected changes.

o Restrict modification of system start-up scripts to systems
 staff.
o Review content of system start-up scripts to ensure that
 secure defaults are specified and programs executed are not
 candidates for Trojan horse conversion.
o Protect audit trail log files from unauthorized modification.

2.2 Network Hosts

In computer networks, systems typically share data and other
resources. This complicates the problem of unauthorized access by
adding two new variables: the identity of the remote system; and
the relationship between the identities of the users of the two
systems. The networking software creates additional avenues for
access to the system. The security mechanisms controlling these
access paths must be reviewed for vulnerabilities.

Networking software can allow a user or system to access a system
or its resources. The original list of vulnerability test
objectives must be enhanced to reflect the additional threats. On
a network host, the test objectives are to identify vulnerabilities
which would allow:
o a user to masquerade as another user or a system to masquerade
 as another system;
o installation of Trojan horses or penetration by network worms;
 and
o circumvention of security policy by users of remote systems.
 A network host will have all of the potential vulnerabilities of
a stand-alone system, as well as the vulnerabilities contained in
the network services. Reviewing the configuration of the network
will require additional tests, but these tests address the same
issues as an audit of a stand-alone system. To extend the
stand-alone rules for network hosts, examine the added services
with these concerns in mind. The particular additions will depend
upon the types of services offered and used by the system.

For instance, a network host may perform all authentications
locally. (In this case, the password is transmitted across the
network.) Then the testing would include all the identification and
authentication rules for the stand-alone system. One additional
requirement is needed: network access should not allow users access
to the password file beyond that provided in stand-alone mode.

In network environments, many systems rely upon the remote
authentication of a user. In this case, the problem is entirely
different. The local host relies upon the remote system to
authenticate users. The result of the authentication is only
reliable if:
o the remote system is known to the system; and
o the remote system's identification and authentication database
 correlates accurately with the local system's database.
That is, it is important to know the remote users and their
system.

The concerns for user files are similarly augmented according to
services provided. If the users can define remote access
capabilities for themselves, the content and protection of those
files should be reviewed. For system files, the critical files are
any file modifying remote access capabilities and system binaries
used in network communication. Vulnerability testing software can
review the configuration files, verify that binaries have not been
modified, and may even verify the correlation of identification
databases.

2.3 Summary

The generic rules presented in Section 2.1 provide a basis for
testing any system. The particular rules applied in the testing
process reflect the specific features of the system in question.
There may be vulnerabilities associated with every resource (such
as electronic mail or virtual disk) that the system provides.
Examine each resource to determine if additional identification and
authentication tests are required or if critical user or system
files exist.

These rules extend the basic vulnerability testing objectives to
address specific features of the system. If the host supports
additional resources, such as a database management system, or
maintains a relationship of trust with connected devices, the
testing rules must be enhanced to reflect this.

The absence of controls on a system can reduce the set of testing
rules. For example, personal computers frequently lack
identification and authentication mechanisms or file-level access
control. For those systems, the identification and authentication
rules do not apply.

Note that many additional security rules are not candidates for
review by vulnerability testing tools. For example, a software
audit can not detect passwords taped to terminals; this is external
to the system. However, software can determine if a user can copy
the password file.

3.0 Vulnerability Testing Methods

Depending upon the objective, vulnerability tests may implement a
variety of methods to assess security. Tests may mimic an attacker
or simply browse through the system in more typical auditing
fashion. Tests may run on the system undergoing audit or may
execute on a remote system. Tests may view the system narrowly or
broadly.

This section describes several different classifications for
vulnerability test programs. Tests are classified according to:

o passive or active testing;
o scope;
o local, network, or distributed testing; and
o reporting methodology.
The following sections define and describe these classifications
and suggest appropriate applications.

3.1 Active and Passive Testing

Tests may be classified as passive or active. Active tests are
intrusive in nature; they identify vulnerabilities by exploiting
them. Passive tests only examine the system; they infer the
existence of vulnerabilities from the state of the system.

Consider the example of a password-based identification and
authentication system. A password testing program might actually
attempt to login with a small set of "easy" passwords. When
successful, the program might mail or write a notification of this
success to the system administrator. This is an active test. A
passive test might involve checking the password file protection,
or copying the file and performing off-line encryption and
comparison of encrypted strings.

Both types of tests are useful. Where the password file is
unprotected, an off-line test is more efficient, more realistic,
and more thorough. Active testing may be the only possible method
if the test program cannot gain access to the encrypted data.

However, active tests are more dangerous than passive tests.
Active tests can frequently be transformed into a Trojan horse (or
network worm) with only minor modifications. Passive tests are
usually less volatile. However, both types are useful to an
attacker, as in the two types of password tests.

3.2 Scope

Test programs may be classified according to scope. Test programs
may examine a single vulnerability or examine the vulnerability of
an entire system. The single vulnerability tests have a narrow
scope; the system vulnerability tests exhibit a broad scope.

The simplest vulnerability testing programs test for a single
specific vulnerability. For example, a test might simply check for
unprotected start-up files. By using a series of such tests, it
is possible to identify common vulnerabilities. However, such

tests do not consider the complete ramifications of the
vulnerabilities.

The cumulative effect of a vulnerability may be far greater than
it appears. For example, unprotected start-up files allow users to
plant Trojan horses. If user X's start-up files are unprotected,
and X can modify the password file, any user may masquerade as any
other user. This is a simple example; more realistic scenarios can
become much more complex.

A single vulnerability test would identify the unprotected start-up
files. Another single vulnerability test might report that X was
among users who could modify the password file. A system
vulnerability test performs many single vulnerability tests,
considers the system's access control rules, and determines the
complete ramifications for system security.

System vulnerability testing is more useful than a collection of
single vulnerability tests. It is not always possible to correct
every specific item flagged by vulnerability testing. A system
vulnerability test will assist the administrator in determining the
total risk (to the system) posed by a specific vulnerability.

3.3 Local, Network, and Distributed Testing

Tests may be designed for local testing of a single system, network
testing, or distributed testing. Local tests examine the system
where they execute. Network tests use communication links to
examine the state of a remote system. Distributed tests execute
different tasks on each system, according to the system's role.

Most tests are designed for local execution on a single machine.
 These tests are restricted to the examination of the (virtual)
system. They can examine the content and protection of local
objects, and remote objects that are available on virtual devices.
They cannot examine objects strictly local to remote systems.

Network tests examine the state of remote systems, using
communication links to access various services and objects. This
type of test permits network security managers to assess
compliance with security directives. For example, a network test
could determine if insecure network services were enabled by
actively probing systems.

This may be sufficient for network hosts that do not trust other
network hosts. However, if the host is a member of a distributed
system, a remote system performs authentication or access control
of local objects. In this case, security-relevant controls and
information are distributed among the systems. The testing must
analyze components from each host to adequately assess the
vulnerability of the distributed system.

To ensure synchronization of controls, distributed tests are needed
to compare the configurations of the "related" hosts. Tests that
perform this task must consider each host's role in the system and
analyze the appropriate components. Accessing the appropriate
components often requires local execution, so the tests themselves

must be distributed in nature.

3.4 Reporting Methodology

In most cases, test reports are generated for the local system
administrators. Test reports might also be returned to a central
site for auditing purposes. There is a great difference in the two
methods. In the former, the test is a tool for the system
administrator. In the latter, the tests are intended to identify
systems that pose an unacceptable risk to the network.

As an example, an international network was attacked several times
by network worms that exploited the same vulnerability. The
network security administrator had issued an edict requiring
correction of this vulnerability after the first incident. A
network test with centralized reporting would have assisted the
network administration in the identification of non-compliant
systems. In combination with administrative procedures (to disable
network connections of non-compliant systems), such testing might
have reduced the networks vulnerability to subsequent attacks.

3.5 Summary

To summarize the most important points of this section:

o Restrict the use of active tests to circumstances requiring
 their unique characteristics. Active tests can test any
 vulnerability, but are dangerously close to a Trojan horse or
 worm. Passive test programs effectively perform most
 vulnerability testing tasks and are relatively difficult to
 convert to Trojan horses or worms.

o Active testing techniques are closely coupled with the
 specific system. A variety of passive techniques are
 available; they may be applied to any system.

o System vulnerability tests analyze multiple vulnerabilities
 and attempt to determine the cumulative effect. This is
 superior to a battery of single vulnerability tests in which
 each addresses a specific vulnerability.

o Local testing is employed to determine the vulnerability of
 a stand-alone system, or network hosts that do not "trust"
 other hosts.

o Network testing is employed by network security officers to
 examine the use of "dangerous" services. These are often
 active tests.

o Distributed testing is required for systems that "trust" other
 hosts to enforce access control or perform identification and

 authentication.

o Vulnerability testing tools use local reporting when employed
 to assist a local system administrator. The tools may use
 remote reporting when someone other than the local system
 administrator (e.g., the network security administrator or an
 auditor) is analyzing security. Remote reporting is also
 useful when a single system administrator runs multiple
 machines on a single network.

4.0 Vulnerability Testing Techniques

This section describes the various techniques which may be used to
ensure conformance with the generic testing rules. A single rule
may require several different tests, regardless of the testing
methodology employed. Each test would employ a different technique
to examine a particular aspect of the problem.

4.1 Configuration Review Tests

Modern computer systems are highly configurable, reflecting the
flexibility of controls and range of security policies that must
be implemented. The relative security of the different
configurations can also vary widely. In many cases, a system runs
in an undesired and insecure system configuration. This often
occurs because that configuration may be the default or the
simplest to implement. In other cases, the complexity of the
configuration file results in an unintended (and insecure)
configuration. Configuration review tests read and interpret the
files which represent system configuration information, searching
for evidence of vulnerabilities.

Insecure configurations may exist for longer periods of time than
most system configuration errors. If a system configuration error
results in system failure or impacts performance, users will insist
that the error be identified and corrected in a reasonable time
frame. Configuration errors degrading security may not be
identified until the machine is successfully attacked.
Configuration review tests are a reliable method for detecting
these errors before a system is attacked.

An example of an insecure configuration is uncontrolled sharing of
resources by a network host (e.g., sharing disk partitions with any
system on the network). Few scenarios justify uncontrolled remote
disk access. However, if the installation scripts default to
"export to world," many systems' configuration will never be
corrected. This type of configuration problem can be detected by
analyzing the content of network configuration files with
configuration review tests.

4.2 File Content and Protection

Command files (especially start-up scripts) and system utilities
are attractive targets for the insertion of Trojan horses. The
integrity of these processes must be protected. A test is required
to ensure that no one but the rightful owner can modify the
start-up procedure. This is not a simple task, since each process
may execute others and these must be protected as well.

Verification of access control settings is the first step in
assessing the security of these files. This process is often
complicated by the fact that many systems support several access
control systems and their interactions are not always clear. In
addition, testing the permissions associated with a file may be
insufficient.

To be more complete, it is necessary to verify that all programs

the command file executes are also appropriately protected. As an
example, a UNIX test program might confirm that rc.boot is owned
by root and protected from modification by all other users. This
is insufficient; if any program executed by rc.boot is not owned
by root and similarly protected from modification, that program is
a potential Trojan horse. This type of testing requires reviewing
the content of the file, and identifying called programs.

Users can also create vulnerabilities by assigning inappropriate
values to user-controlled configuration parameters or environmental
variables. In these cases, the content is examined to determine the
values assigned to user-controlled variables. This value is
evaluated and flagged if insecure.

A simple example is the default file protection attribute that is
assigned when a user creates a file. If this value is weak, such
as "modify by anyone," confidentiality and integrity may suffer.
A program could trace through the start-up procedures to determine
the value assigned to this variable.

In a more complex example, UNIX systems typically specify the set
of trusted hosts for accessing BSD networking utilities (rlogin,
rsh, and rcp) in a configuration file. Users can modify this list
by placing entries in their own network configuration files. The
degree of security provided by the system is directly affected by
these settings. A program could read and analyze the content to
evaluate the security level.

4.3 Bug Fixes

Operating system bugs can also be a security vulnerability in a
system. Some highly publicized attacks, including the Internet
worm, have exploited these vulnerabilities to gain access to
systems. As a result of these incidents, vendors are making a
concerted effort to develop and distribute patches to correct these
bugs. However, many system administrators do not keep their
systems current by installing the appropriate patches.

The security advisories which announce the availability of the
security patch describe simple procedures to determine if the patch
is required. These procedures usually involve verifying sizes,
version numbers, or checksums associated with the executables. The
appropriate patch(es) can be obtained from the vendor.

This process can be automated with a program that reviews system
binaries to verify the installation of security bug fixes. These
tests may be active or passive in nature. Active tests attempt to
exploit the bug; passive tests use checksums, file sizes, and
version numbers to determine if the patch is in place.

The passive tests are extremely limited in nature; they apply to
a particular hardware platform and a range of software versions.
For example, a passive program which confirms that the UNIX fingerd
binary is secure might only work on SunOS version 3.X for the SUN-3
series of computers.

The active tests are more flexible. An active program testing the

fingerd bug could be recompiled and executed on any UNIX system.
However, the test program could also be transformed into a worm or
Trojan horse with only minor modifications. As with all active
tests, distribution must be carefully considered.

4.4 Change Detection Tests

Change detection tests are a class of passive audit tests. These
tests are performed to verify that files have not changed since
some baseline was established. These tests ignore date and time
stamps, which may be faked or corrupted, and rely on cyclic
redundancy checks (CRCs) or encryption-based algorithms such as the
Data Authentication Algorithm (DAA) [7], which utilizes the Data
Encryption Standard (DES) [8]. These tests cannot prevent change
or determine what has changed, but are reliable for determining if
change has occurred. This sort of test may be performed to ensure
that a system program has not been replaced with a Trojan horse.

Change detection tests are sometimes used in a reverse fashion to
verify that an update has been installed; if the CRC generated is
X, the patch has not been installed. Note that the result of
change detection tests will be different for binaries of the same
program on different hardware platforms. Application of such tests
will be limited to particular hardware/software combinations.

Enhanced techniques are required to review self-modifying
executables. In such a case, a "map" specifying the constant
portions of the program and the corresponding checksums are
required.

Change detection testing can be very effective, but is more
demanding procedurally than file content or configuration review
tests. The degree of assurance corresponds directly to the
protection of the baseline. It is best to store checksums
off-line. Another option is to store the checksums in an encrypted
form.

4.5 System-Specific Testing

In some cases, generic testing must be discarded in favor of
system-specific testing. Tests must be designed to target specific
features of a system when generic techniques are not useful. For
example, a review of "industry-standard" passwords would be
targeted towards specific account-password combinations unique to
each particular operating system.

As a general rule, active tests will be system-specific. They will
attempt to exploit specific vulnerabilities by executing
system-level or resource-level commands. Configuration review
tests are also system-specific. They will test for particular
insecure configurations of this particular operating system.

In contrast, change detection tests are entirely generic. The
algorithm utilized to create checksums is not related to the
system.

4.6 Distributed Communications

Centrally reported tests are a managerial device, designed to
assist personnel who manage or audit a large number of systems.
However, this device is also vulnerable to eavesdropping when
executed on typical networks. Eavesdroppers can "listen
promiscuously" and obtain access to confidential vulnerability test
reports. These reports may go so far as identifying the
vulnerabilities for the attacker.

Results of vulnerability testing should always be secured if
central reporting is performed. If the system has any
vulnerabilities, the complete results of vulnerability testing will
describe them in detail. There are two basic methods for
protecting this information.

First, reports can be "sanitized" by reducing the information
reported to a simple numeric score. Secondly, public-key
encryption techniques can be used to assure confidentiality. These
techniques can, of course, be used in combination.

4.7 Artificial Intelligence

Artificial intelligence techniques can be employed when evaluating
system vulnerability. Identifying a basic vulnerability in a system
is relatively easy. The ramifications of the exploitation of a
particular vulnerability are not always so obvious, though.

For example, suppose a user has a null password. Clearly, anyone
can now masquerade as that user. The threat is even greater if
that user can modify system configuration files. That would let
anyone plant a Trojan horse, and so execute programs with other
users' authorizations. That makes the null password much more
serious. This is a relatively simple example, requiring only two
steps. More realistic examples might require a longer series of
steps.

To recognize the full ramifications of a vulnerability, a system
must be able to identify a series of actions that could be
exploited to obtain access or information that could not be
achieved by exploiting any single vulnerability. This task is well
suited to rule-based artificial intelligence tools. Given the
rules for system access, such a tool can quickly determine the
"maximum" vulnerability.

4.8 Summary

To summarize the most important points of this section:

o Passive tests are usually sufficient; active tests are
 dangerously close to a Trojan horse and should be used only
 in special circumstances.

o Network testing is useful when configuration files on more
 than one machine must be synchronized or for active testing
 of critical system access problems.

o Tests which analyze multiple specific vulnerabilities and
 attempt to determine the cumulative effect are superior to a
 large number of tests which address only a specific
 vulnerability.

o Local reporting is used when auditing to assist a local system
 administrator; remote reporting is used when the network
 security administrator wishes to analyze the security of the
 network. (Remote reporting is also useful when a single
 system administrator runs multiple machines on a single
 network.)

o There are many techniques for auditing; these techniques may
 be used in concert to address all facets of a potential
 security flaw. Most techniques look for a clear "problem";
 others look for unexpected change in a system.

o When passive testing is insufficient, generic techniques must
 be abandoned as well. The basic nature of active testing
 targets system-specific vulnerabilities. As a result, all
 active tests will be custom software.

o Centrally reported tests are vulnerable to eavesdropping when
 executed on public networks. Developers should draw upon the
 field of secure communications to ensure confidentiality.
 Failing that, remove sensitive information so that the
 eavesdropper does not learn of specific vulnerabilities.

o System vulnerability testing is a complex task. It can be
 implemented by augmenting other testing techniques with
 rule-based analysis techniques. (Other artificial
 intelligence techniques, such as neural nets, may also be
 applicable.)

5.0 Policy and Procedures

An effective vulnerability testing program can increase the level
of computer security throughout an organization. Vulnerability
testing is intended primarily to help system managers achieve the
maximum security with available tools. Vulnerability testing is
also a management tool, underscoring the management commitment to
security. Realizing the potential requires that guidelines are in
place and adequate tools are provided to the appropriate personnel.

The formulation of guidelines is generally the responsibility of
the organization's security officer. Guidelines should specify the
procedures for use and distribution of vulnerability testing tools
and the responsibilities of organization personnel in the program.

Development or procurement of appropriate tools must also fall to
the security officer, perhaps with the assistance of system
managers. This process begins by reviewing the organization's
systems and developing vulnerability testing requirements in
accordance with system functionality. The next step is to develop
specific requirements for each type of system. From the specific
requirements, the available software can be analyzed for
suitability. Remaining holes may be addressed by custom software.

Ultimate success or failure will rest with the system
administrator. A vulnerability testing program's primary goal is
getting the most security from the available controls. The system
administrator must perform the tests and address the indicated
vulnerabilities.

5.1 Testing Procedures and Responsibilities

Management should establish systems procedures to ensure that:

o vulnerability testing is a regular procedure;
o vulnerability testing tools are available and complete; and

o vulnerability testing tools that pose a risk to the system
 are adequately protected from misuse.

This section presents basic concepts for the formulation of
vulnerability testing guidelines.

 Require regular vulnerability testing of systems.

System managers should perform vulnerability testing on a regular
basis (monthly or weekly) and at several critical milestones. The
critical moments are: installation or upgrade of system software;
modification of user privileges; and an attack (or suspected
attack) on a system. Whenever system software is installed,
permissions and contents should be reviewed. Installation of new
software will also make the baseline for change detection obsolete.
When user privileges are modified (such as introduction of new
users or adding users to a new group), the system may be put at

risk. Finally, whenever an attack has occurred, there is a chance
that Trojan horses have been left behind.

 Provide vulnerability testing tools to all appropriate personnel.

System managers are the primary beneficiaries of testing tools.
However, other members of an organization may also use these tools.
Network managers may benefit from these tools; auditors can also
use these tools to judge the security posture of systems. The
organization's security officer should identify personnel with
security responsibilities and take their needs into account in the
toolkit development process.

 Ensure that adequate tools are available for the most common
 systems.

Provide access to adequate software for common agency systems
through an organizational vulnerability testing toolkit. This
toolkit may include:
o locally developed software;
o public domain tools; and
o commercial vulnerability testing packages.
 Internet archive sites and system-specific users' groups are good
sources for public domain software. These packages are usually
distributed in source code, and can be ported to new OS releases.
When commercial packages are selected, the purchase of site
licenses is a good plan. In any case, supplying the tools from a
central site will encourage use of these tools. Requirements for
vulnerability testing may be ignored if tools are expensive or
difficult to locate.

 Develop checklists where vulnerability testing tools are not
 applicable.

Some items noted in Section 2 cannot be assessed on all platforms.
This may be due to a lack of controls or the variety of hardware
platforms. For example, an organization might have a dozen types
of PC-compatible computers. Many of these systems will lack
identification and authentication; those which support it may do
so in a non-standard manner.

Most organizational security guidelines address selection of
passwords, and vulnerability testing of multi-user systems should
examine compliance to those guidelines. However, PC passwords are
an example where compliance cannot be assessed. In this case, the
vulnerability testing process would include a checklist that would
remind the user of the guidelines. The user would simply check the
appropriate boxes to verify compliance. For PC passwords, the
checklist might appear as follows:

 (Box) Password is at least six characters in length, and is
 mixed case or includes a digit.
 (Box) Password is not the name of a person or place.
 (Box) Location is physically secured when authorized personnel
 are not present.

 Increase depth of analysis for critical nodes.

Some systems are more important to the organization than others.
The tests should reflect this fact. For example, a UNIX-based
network gateway is probably more important than a UNIX-based system
configured as a single user workstation. The gateway should be
subjected to more intensive vulnerability testing techniques. The
organization's security officer should identify these critical
nodes and determine the level of testing required.

5.2 Developing a Toolkit

The primary tasks involved in the development of an organization's
vulnerability testing toolkit are to ensure that the vulnerability
tests are complete and the tests themselves do not pose a risk to
the system.

There are a number of concrete steps which may be taken to obtain
adequate tests.
o Review the organization's systems and develop vulnerability
 testing requirements in accordance with system functionality.
 This process is based upon the generic rules presented in
 Section 2.
o Select appropriate methodologies for each class of personnel
 (e.g., system managers and network security managers) that
 will use these tests. This process is based on the
 information presented in Section 3.
o Develop specific test requirements for each type of system.

o Analyze the available software against the specific
 requirements (developed in the previous step) for suitability.

o Address unfilled requirements by developing or procuring
 custom software. (Developing these tests requires considerable
 knowledge about security but does not require extraordinarily
 difficult software techniques.)

The following common-sense points should be considered in this
process.

 Vulnerability testing tools should be comprehensive.

Any single hole in system security can place an entire system at
risk. Thorough testing of identification and authentication
controls without testing the content and protection of system
configuration files will only perpetuate the illusion of security.
Computer system vulnerability testing tools should address every
applicable item from the generic rules list presented in Section
2.

 Active tools should only be used where passive tools are
 inadequate.

Passive tools are preferable, because of the similarity of active
testing tools and automated attack tools. However, active tools
may be required to verify compliance in critical cases. Critical
cases would include known vulnerabilities which have been or are
currently being exploited.

As an example, a network security administrator might use active
tools to ensure that critical security vulnerabilities have been
closed. These vulnerabilities might have been exploited by known
network worms or hackers currently targeting an organization. In
such a case, the network administrator may use an active tool to
identify systems that have not closed the security hole.

Note that any active network testing tool must be written to
execute locally, "probing" the remote systems. The risks of a
"good" worm being trapped and modified by hackers would outweigh
any possible improvement in security. The worm could be trapped,
and simple modifications to the executable would quickly generate
a very dangerous attack mechanism.

 Borrow from organizations with an established vulnerability testing
 program.

If an organization has a small number of systems of a particular
type, it should look to organizations with a large computing base
of this type for assistance. This assistance may include
development of vulnerability testing requirements, analysis of
available tools, or sharing agency-developed tools.

5.3 Distribution of Tools

There are two viewpoints on the use and distribution of
vulnerability testing software. The software can assist a
conscientious system administrator in the maintenance of a secure
configuration. It can also be used as a tool to assist to a
malicious individual attempting to penetrate a system. Those who
emphasize its positive potential tend to support wide distribution
of such software. Those who emphasize its negative potential are
often proponents of limited distribution.

The potential of vulnerability testing tools cannot be achieved
unless they are in the hands of the appropriate personnel. This
section provides basic guidelines concerning the distribution of
vulnerability testing tools.

 Distribute passive tools widely.

Passive tools for system administrators should receive wide
distribution within the organization. These tools are worthless
to an organization if they are not in the hands of the system
administrators. Properly used, these tests guard against the type
of common mistakes which can lead to simple manual attacks or worm
attacks. Many similar tools, and in some cases these exact tools,
are believed to be available in the hacker community. Wide
distribution of these tools is necessary to place system
administrators on an even footing with their adversaries.

However, active tools developed for network or organizational
security administrators should be tightly controlled. Whether in
source or binary form, such tests represent a serious threat to the
organization. Distribution of active tools is an invitation for
automated attacks, especially in networked environments.

 Source code distribution is usually preferable for passive tools.

Locally developed or public domain vulnerability testing tools can
be distributed as source code or in binary form. (Commercially
available tools will usually be available in binary only.) The
most appropriate form depends upon the organization's computing
systems and the personnel who administer the systems.

Source code distributions allow the system administrator to locally
compile or interpret the tests on a wide range of systems. This
is the simplest way to address the myriad of hardware and software
combinations in open systems. Binary distributions would require
too much maintenance for most organizations.

However, source distribution has its drawbacks. Source
distributions provide a nice, readable description of the security
vulnerabilities reviewed. Source code can potentially be modified
for use as an automated attack technique. Finally, the systems
administrators need to be able to modify and compile the software.

In an organization with homogeneous computing systems, tools can
be distributed in binary form. This may be preferable. If the
users will be system administrators and auditors with minimal
experience, binary distribution may be required.

 Secure the distribution process.

The security of the distribution process itself is another
important consideration. The distribution process should ensure
both integrity and confidentiality of the delivered tools. The
distribution process may involve transfer of physical media or may
be performed electronically.

If the distribution process involves physical media, security
begins with physical control. Registered mail (or similar)
delivery can provide assurance that the media reaches appropriate
personnel. This is sufficient for some classified information; it
is probably good enough for many types of tools.

If this level of security is insufficient (e.g., active tools),
encryption becomes the primary method for securing the distribution
process. Encryption can be used to provide both integrity and
confidentiality. It is critical that the key and software are
delivered via different paths.

If electronic distribution is employed, the transfers should be
performed from a single, protected server. Several alternatives
are available to secure this type of distribution. The server may
require identification and authentication (pre-authorized passwords
of users for access. Encryption can protect end-to-end security.
CRC techniques can be used to verify integrity. These methods can
be used in combination.

If passwords are to be used for authentication, distribution of
passwords with a limited life span to system administrators who
request the information via e-mail would provide a limited audit
trail. Telephone distribution of passwords (rather than e-mail)
would provide additional confidence in the authentication.

 Protect the software after distribution.

Security measures should not end with the distribution process.
Guidelines for safe use should be provided with the software.
Similarly, the possible ramifications of unprotected tests should
be explained. System administrators should be required to protect
the executable files (binary files or command files) and delete the
source programs for compiled code.

 Address bug fixes.

Central distribution of security-relevant "bug fixes" is

appropriate if the organization has a homogeneous computing base.
Bug fixes can be archived or distributed via electronic mailing
lists. Distribution of security patches should be protected in the
same manner as vulnerability testing tools.

Distribution of relevant "bug fixes" to appropriate systems can be
very difficult in a large organization with a mixed computing base.
The relevance of the bug fix depends on the system's current
hardware and software configuration. If the agency has access to
a major network, simply provide information regarding
system-specific mailing lists where such patches are regularly
announced. The administrators of the systems would be responsible
for obtaining the appropriate security patches.

5.4 Summary

The organization's security officer should:
o determine the level of testing required for the "typical"
 system and the frequency with which it is required;
o determine who should have access to security access tools and
 the testing methodologies they should employ;
o identify critical systems that will require more rigorous
 testing;

o ensure that adequate tools are available for the most common
 systems; and
o ensure that appropriate guidelines are in place where testing
 is unusable.

Possible sources for toolkits are public domain tools, local
development, and procurement of commercial tools. Toolkits should
emphasize passive tools; they are adequate for the great majority
of testing scenarios. The distribution process should be as secure
as possible, but wide distribution is imperative. If active
testing tools are required, they must be tightly controlled.
Finally, procedures for distribution of security-relevant bug fixes
must be developed.

The ultimate success or failure of a vulnerability testing program
depends upon the system managers, auditors, and resource managers
who receive the tools. They must use these tools to realize any
benefit. Equally important, managers must act upon the data these
tools provide. If they do, the level of computer security achieved
by an organization can be increased greatly.

References

[1] Brock, Jack L. Jr., Computer Security: Hackers Penetrate DOD
Computer Systems, GAO/T-IMTEC-92-5.

[2] Spafford, Eugene, The Internet Worm Program: An Analysis
Technical Report CSD-TR-823. Department of Computer Science, Purdue
University, November, 1988.

[3] Green, James L. and Sisson, Patricia L., The "Father Christmas
Worm," in the 12th National Computer Security Conference
Proceedings, 1989.

[4] Longstaff, Thomas A. and Schultz, Eugene E., Beyond Preliminary
Analysis of the WANK and OILZ Worms: A Case Study of Malicious Code
in the Proceedings of the Third Workshop on Computer Security
Incident Handling, 1991.

[5] Stoll, Cliff, An Epidemiology of Viruses & Network Worms, in
the 12th National Computer Security Conference Proceedings, 1989.

[6] FIPS PUB 112 Password Usage, May 30, 1985.

[7] FIPS PUB 113 Computer Data Authentication, May 30, 1985.

[8] FIPS PUB 46 Data Encryption Standard, January 15, 1977.

Primary Tools Reviewed

A number of tools were examined while performing research for this
paper. The majority of these tools were designed for UNIX or VMS
systems, although tools exist for personal computers and mainframes
as well. This section provides a brief description and references
for the major tools or toolkits reviewed.

Note that newer versions have been released for most of these
packages. Many other tools have also been developed, but were not
reviewed for this project. Information about vulnerability testing
software that is currently available for your system may be
obtained from your vendor, user groups, or various electronic
mailing lists.

COPS 1.3

COPS, or the Computer Oracle Predictor System, is a collection of
configuration review tests, file protection tests, password tests,
audit trail analyzers, and a CRC-based checksum program for
detection of change. COPS is composed primarily of single
vulnerability tests, but it also includes a rule-based system
vulnerability analyzer. COPS is in the public domain and source
can be obtained from a number of ftp sites on the Internet or
comp.sources.unix.

The original COPS paper, "The COPS Security Checker System" by Dan
Farmer and Eugene H. Spafford, can be found in the Proceedings of
the Summer 1990 USENIX Conference.

Clyde Digital Security Toolkit

Clyde Digital's Security Toolkit is a commercial software security
package for VAX systems using VMS. Security Toolkit is designed
"to assess the security of VAX/VMS computer systems." Security
Toolkit is a collection of locally reported passive audit tests.
A variety of targets are audited, including:

o user access authorizations;
o capabilities and rights analysis;
o object access, controls and protections;
o network security and remote access authorization (proxy
 log-in; protection of network objects; security of network
 executor);
o VMS audit and sysgen reporting; and
o prior period comparisons.

Clyde Digital's Security Baseline System is available as an option
for the Security Toolkit security package for VAX/VMS. Security
Baseline is designed to "locate and report discrepancies between
current system characteristics and site-defined security
standards."

The system consists of three components: Templates; Tests; and
Baselines. The Template defines the correct attributes for a set
of system entities. The types of entities are pre-defined. Tests

are used for the comparison of system-specific entities against a
template. Baselines are logical groupings of tests which may be
executed interactively or in batch mode.

UNIX-CAATS

NIST and the Department of Energy developed the UNIX-CAATS software
package for use by auditors from the Department of Energy Inspector
General's Office. This package included a password checker by Dr.
Matt Bishop (formerly of NASA/Ames), and a variety of passive,
single vulnerability tests. The single vulnerability tests
included system and user configuration review tests, network
configuration tests, and access control review tests. It also
included a file permission verifier similar to SPI/UNIX's File
Permission Inspector.

The NIST/DoE toolkit lacked CRC testing and complex file protection
tests (which would read files and determine other programs and
files which would be executed). UNIX-CAATS is no longer supported;
its functionality has been superseded by COPS.

SPAN Toolkit

The SPAN Toolkit includes NASA developed software for VMS
vulnerability testing. This toolkit is available to all VMS
systems connected to the NASA Science Internet (NSI). The primary
security test components include:
o captive account auditing;
o file-based checksum calculation and comparison;
o directory-based differencing for on-line backup disks;
o dictionary-based password checking;
o a security alarm extractor;
o a terminal timeout and resource control monitor;
o a utility for identifying high-risk accounts; and a
o pronounceable password generator.

The system lacks tools for examining the contents of system
configuration files. It may not be obvious which combinations of
privileges present an unacceptable risk. The system does not
examine capabilities and rights, or object access authorization.
When misused, these VMS features may result in unexpected access
privileges.

The Security Profile Inspector for UNIX

The Security Profile Inspector for UNIX (SPI/UNIX) is a software
package developed by Lawrence Livermore National Laboratory for
vulnerability testing of VMS systems. The package is available for
distribution within the Department of Energy. (Other agencies may
also be able to obtain the package. Contact the Computer Incident
Advisory Capability, or CIAC, for further information.) SPI/UNIX
is a set of three passive tests which perform the following
functions:
o test for easily guessed passwords;
o generate and verify checksums of critical files; and
o save and verify current access permissions associated with

 critical files;

SPI/UNIX does not review protections of programs called within
critical shell scripts or review the content of configuration
files.

The Security Profile Inspector for VMS

The Security Profile Inspector for VMS (SPI/VMS) is a software
package developed by Lawrence Livermore National Laboratory for
vulnerability testing of VMS systems. The package is available for
distribution within DoE, and is similar in nature to the SPI/UNIX
package. (Other government agencies may be able to obtain the
package as well.)

The SPI/VMS package consists of four programs which:
o check for trivial passwords, such as user names, dictionary
 words, and null entries;
o store, retrieve and verify checksums and time stamps
 associated with critical system files;
o identify all users who have access to a specified file or
 files; and
o check a specified list of files for a particular identifier,
 or for identifiers in general.

Like SPI/UNIX, the package does not concern itself with the content
of files. Errors in network or system configuration are not
explicitly identified. The system only identifies modifications
in content or access parameters of critical files.

